这项工作提出了一种用于实验颗粒物理学的域通知的神经网络架构,其使用与时引起室(TPC)技术的粒子相互作用定位作为暗物质研究作为示例应用。 TPC内产生的信号的关键特征是它们允许通过称为重建的过程定位粒子相互作用。虽然多层的感知者(MLPS)被出现为TPC中重建的主要竞争者,但这种黑箱方法不反映出潜在的科学进程的先验知识。本文在基于神经网络的交互本地化的重点看,并根据信号特性和检测器几何形状来编码先前的检测器知识,进入多层神经网络的特征编码和输出层。所得到的域通知的神经网络(DINN限制了初始特征编码层中神经元的接收领域,以便考虑TPC内产生的信号的空间局部性质。DINN的这一方面具有相似之处图形神经网络的新出现区域,因为初始层中的神经元在其后续层中仅连接到少数神经元,与MLP相比,显着降低了网络中的参数的数量。此外,为了解释探测器几何形状,网络的输出层使用两个几何变换来修改,以确保Dinn在检测器内部产生本地化。最终结果是一个神经网络架构,参数比MLP更少60%,但仍然达到类似的本地化性能,并为未来的架构开发提供了一种改进性能的路径,因为它们能够ENC的能力odes附加域名知识进入架构。
translated by 谷歌翻译
Machine learning models are typically evaluated by computing similarity with reference annotations and trained by maximizing similarity with such. Especially in the bio-medical domain, annotations are subjective and suffer from low inter- and intra-rater reliability. Since annotations only reflect the annotation entity's interpretation of the real world, this can lead to sub-optimal predictions even though the model achieves high similarity scores. Here, the theoretical concept of Peak Ground Truth (PGT) is introduced. PGT marks the point beyond which an increase in similarity with the reference annotation stops translating to better Real World Model Performance (RWMP). Additionally, a quantitative technique to approximate PGT by computing inter- and intra-rater reliability is proposed. Finally, three categories of PGT-aware strategies to evaluate and improve model performance are reviewed.
translated by 谷歌翻译
Vision-based tactile sensors have gained extensive attention in the robotics community. The sensors are highly expected to be capable of extracting contact information i.e. haptic information during in-hand manipulation. This nature of tactile sensors makes them a perfect match for haptic feedback applications. In this paper, we propose a contact force estimation method using the vision-based tactile sensor DIGIT, and apply it to a position-force teleoperation architecture for force feedback. The force estimation is done by building a depth map for DIGIT gel surface deformation measurement and applying a regression algorithm on estimated depth data and ground truth force data to get the depth-force relationship. The experiment is performed by constructing a grasping force feedback system with a haptic device as a leader robot and a parallel robot gripper as a follower robot, where the DIGIT sensor is attached to the tip of the robot gripper to estimate the contact force. The preliminary results show the capability of using the low-cost vision-based sensor for force feedback applications.
translated by 谷歌翻译
In 2019 Kerdels and Peters proposed a grid cell model (GCM) based on a Differential Growing Neural Gas (DGNG) network architecture as a computationally efficient way to model an Autoassociative Memory Cell (AMC) \cite{Kerdels_Peters_2019}. An important feature of the DGNG architecture with respect to possible applications in the field of computational neuroscience is its \textit{capacity} refering to its capability to process and uniquely distinguish input signals and therefore obtain a valid representation of the input space. This study evaluates the capacity of a two layered DGNG grid cell model on the Fashion-MNIST dataset. The focus on the study lies on the variation of layer sizes to improve the understanding of capacity properties in relation to network parameters as well as its scaling properties. Additionally, parameter discussions and a plausability check with a pixel/segment variation method are provided. It is concluded, that the DGNG model is able to obtain a meaningful and plausible representation of the input space and to cope with the complexity of the Fashion-MNIST dataset even at moderate layer sizes.
translated by 谷歌翻译
Recent NLP models have the great ability to generalise `zero-shot' to new tasks using only an instruction as guidance. However, these approaches usually repeat their instructions with every input, requiring costly reprocessing of lengthy instructions for every inference example. To alleviate this, we introduce Hypernetworks for INstruction Tuning (HINT), which convert task instructions and examples using a pretrained text encoder into parameter-efficient modules inserted into an underlying model, eliminating the need to include instructions in the model input. Compared to prior approaches that concatenate instructions with every input instance, we find that HINT models are significantly more compute-efficient and consistently outperform these approaches for a given inference budget.
translated by 谷歌翻译
Achieving artificially intelligent-native wireless networks is necessary for the operation of future 6G applications such as the metaverse. Nonetheless, current communication schemes are, at heart, a mere reconstruction process that lacks reasoning. One key solution that enables evolving wireless communication to a human-like conversation is semantic communications. In this paper, a novel machine reasoning framework is proposed to pre-process and disentangle source data so as to make it semantic-ready. In particular, a novel contrastive learning framework is proposed, whereby instance and cluster discrimination are performed on the data. These two tasks enable increasing the cohesiveness between data points mapping to semantically similar content elements and disentangling data points of semantically different content elements. Subsequently, the semantic deep clusters formed are ranked according to their level of confidence. Deep semantic clusters of highest confidence are considered learnable, semantic-rich data, i.e., data that can be used to build a language in a semantic communications system. The least confident ones are considered, random, semantic-poor, and memorizable data that must be transmitted classically. Our simulation results showcase the superiority of our contrastive learning approach in terms of semantic impact and minimalism. In fact, the length of the semantic representation achieved is minimized by 57.22% compared to vanilla semantic communication systems, thus achieving minimalist semantic representations.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Both clustering and outlier detection play an important role for meteorological measurements. We present the AWT algorithm, a clustering algorithm for time series data that also performs implicit outlier detection during the clustering. AWT integrates ideas of several well-known K-Means clustering algorithms. It chooses the number of clusters automatically based on a user-defined threshold parameter, and it can be used for heterogeneous meteorological input data as well as for data sets that exceed the available memory size. We apply AWT to crowd sourced 2-m temperature data with an hourly resolution from the city of Vienna to detect outliers and to investigate if the final clusters show general similarities and similarities with urban land-use characteristics. It is shown that both the outlier detection and the implicit mapping to land-use characteristic is possible with AWT which opens new possible fields of application, specifically in the rapidly evolving field of urban climate and urban weather.
translated by 谷歌翻译
Deep learning classifiers provide the most accurate means of automatically diagnosing diabetic retinopathy (DR) based on optical coherence tomography (OCT) and its angiography (OCTA). The power of these models is attributable in part to the inclusion of hidden layers that provide the complexity required to achieve a desired task. However, hidden layers also render algorithm outputs difficult to interpret. Here we introduce a novel biomarker activation map (BAM) framework based on generative adversarial learning that allows clinicians to verify and understand classifiers decision-making. A data set including 456 macular scans were graded as non-referable or referable DR based on current clinical standards. A DR classifier that was used to evaluate our BAM was first trained based on this data set. The BAM generation framework was designed by combing two U-shaped generators to provide meaningful interpretability to this classifier. The main generator was trained to take referable scans as input and produce an output that would be classified by the classifier as non-referable. The BAM is then constructed as the difference image between the output and input of the main generator. To ensure that the BAM only highlights classifier-utilized biomarkers an assistant generator was trained to do the opposite, producing scans that would be classified as referable by the classifier from non-referable scans. The generated BAMs highlighted known pathologic features including nonperfusion area and retinal fluid. A fully interpretable classifier based on these highlights could help clinicians better utilize and verify automated DR diagnosis.
translated by 谷歌翻译
We consider a sequential decision making task where we are not allowed to evaluate parameters that violate an a priori unknown (safety) constraint. A common approach is to place a Gaussian process prior on the unknown constraint and allow evaluations only in regions that are safe with high probability. Most current methods rely on a discretization of the domain and cannot be directly extended to the continuous case. Moreover, the way in which they exploit regularity assumptions about the constraint introduces an additional critical hyperparameter. In this paper, we propose an information-theoretic safe exploration criterion that directly exploits the GP posterior to identify the most informative safe parameters to evaluate. Our approach is naturally applicable to continuous domains and does not require additional hyperparameters. We theoretically analyze the method and show that we do not violate the safety constraint with high probability and that we explore by learning about the constraint up to arbitrary precision. Empirical evaluations demonstrate improved data-efficiency and scalability.
translated by 谷歌翻译